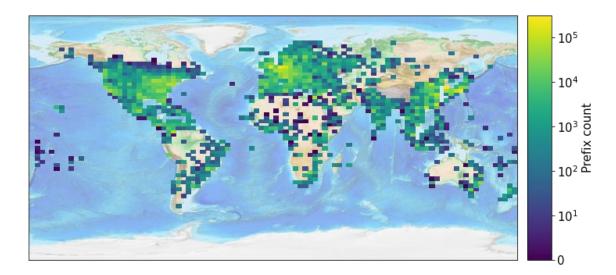
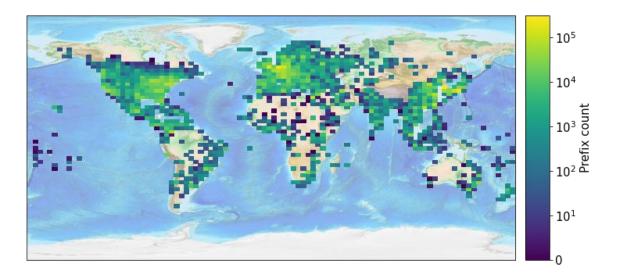
Towards Identifying Networks with Internet Clients Using Public Data

Weifan Jiang^{†*}, Tao Luo^{†*}, Thomas Koch[†], Yunfan Zhang[†], Ethan Katz-Bassett[†], Matt Calder^{‡†}



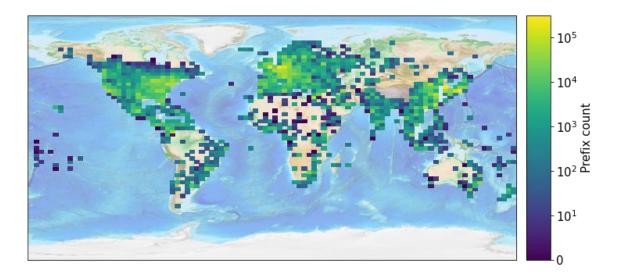
*: primary authors

We measured web client activity globally


These prefixes...

We measured web client activity globally

These prefixes...


 We built this entirely with **public** data and **replicable** methodologies

We measured web client activity globally

These prefixes...

- We built this entirely with **public** data and **replicable** methodologies
- Good coverage that rivals the set of prefixes with client activities seen by Microsoft

Helps researchers to better **interpret** and **analyze** measurement results:

Helps researchers to better **interpret** and **analyze** measurement results:

• Trinocular¹ identifies outages at prefix level. Which outages **impact clients**?

1: Quan et al. "Trinocular: Understanding Internet Reliability Through Adaptive Probing".

Helps researchers to better **interpret** and **analyze** measurement results:

- Trinocular¹ identifies outages at prefix level. Which outages **impact clients**?
- Geolocation databases (e.g. Maxmind²) are more accurate for **end-user** networks.

1: Quan et al. "<u>Trinocular: Understanding Internet Reliability Through Adaptive Probing</u>". 2. <u>Maxmind GeoIP2 Databases</u>.

Helps researchers to better **interpret** and **analyze** measurement results:

- Trinocular¹ identifies outages at prefix level. Which outages **impact clients**?
- Geolocation databases (e.g. Maxmind²) are more accurate for **end-user** networks.

1: Quan et al. "<u>Trinocular: Understanding Internet Reliability Through Adaptive Probing</u>". 2. <u>Maxmind GeoIP2 Databases</u>.

Helps researchers to better **interpret** and **analyze** measurement results:

- Trinocular¹ identifies outages at prefix level. Which outages **impact clients**?
- Geolocation databases (e.g. Maxmind²) are more accurate for **end-user** networks.

But we sometimes lack the data/tools to do so :(

1: Quan et al. "<u>Trinocular: Understanding Internet Reliability Through Adaptive Probing</u>". 2. <u>Maxmind GeoIP2 Databases</u>.

- Previous studies:
 - privileged data¹, out of date...
 - \circ not client-driven²

Chiu et al. "<u>Are We One Hop Away from a Better Internet?</u>".
Heidemann et al. "<u>Census and Survey of the Visible Internet</u>".

- Previous studies:
 - privileged data¹, out of date...
 - not client-driven²
- APNIC AS Population dataset³: maps each AS to the number of users

1: Chiu et al. "Are We One Hop Away from a Better Internet?".

2: Heidemann et al. "Census and Survey of the Visible Internet".

3: APNIC AS Population dataset.

- Previous studies:
 - privileged data¹, out of date...
 - not client-driven²
- APNIC AS Population dataset³: maps each AS to the number of users
 - not validated (to the best of our knowledge)

1: Chiu et al. "Are We One Hop Away from a Better Internet?".

2: Heidemann et al. "Census and Survey of the Visible Internet".

3: APNIC AS Population dataset.

- Previous studies:
 - privileged data¹, out of date...
 - not client-driven²
- APNIC AS Population dataset³: maps each AS to the number of users
 - not validated (to the best of our knowledge)
 - only provides coarse AS-level granularities

1: Chiu et al. "Are We One Hop Away from a Better Internet?".

2: Heidemann et al. "Census and Survey of the Visible Internet".

3: APNIC AS Population dataset.

To identify networks with clients:

To identify networks with clients:

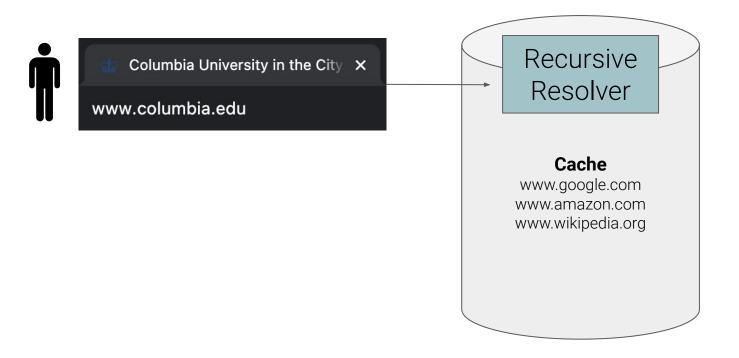
1. focus on client-driven activity

To identify networks with clients:

- 1. focus on client-driven activity
- 2. use replicable methods

To identify networks with clients:

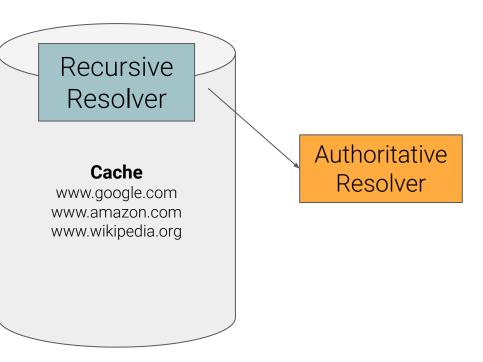
- 1. focus on client-driven activity
- 2. use replicable methods
- 3. prefix-level granularity at global scale

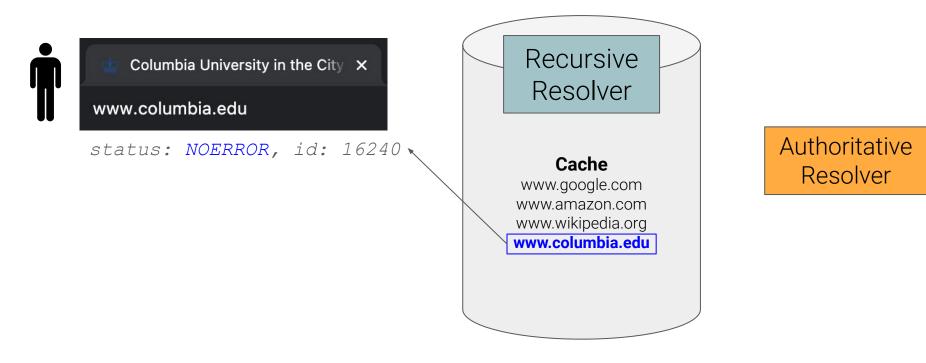

Contributions

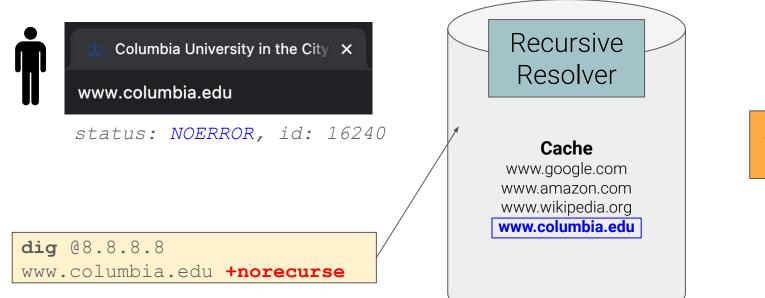
Contributions

- 1. Two new, replicable methodologies to identify prefixes hosting clients:
 - <u>CACHE PROBING</u> (will be covered in this talk)
 - DNS LOGS (please refer to our paper for details)

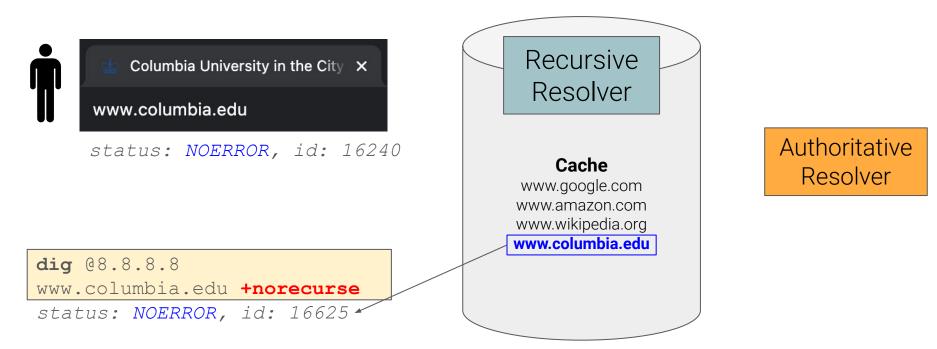
Contributions

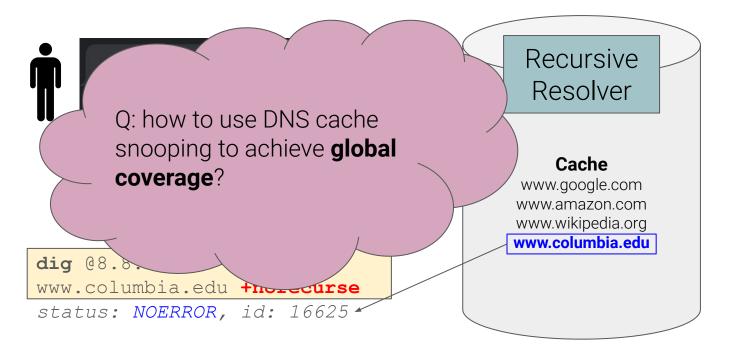

- 1. Two **new**, **replicable** methodologies to identify prefixes hosting clients:
 - <u>CACHE PROBING</u> (will be covered in this talk)
 - DNS LOGS (please refer to our paper for details)
- 2. Cross-comparison with the public APNIC dataset and the privileged Microsoft data to show our methodologies achieve good global coverage

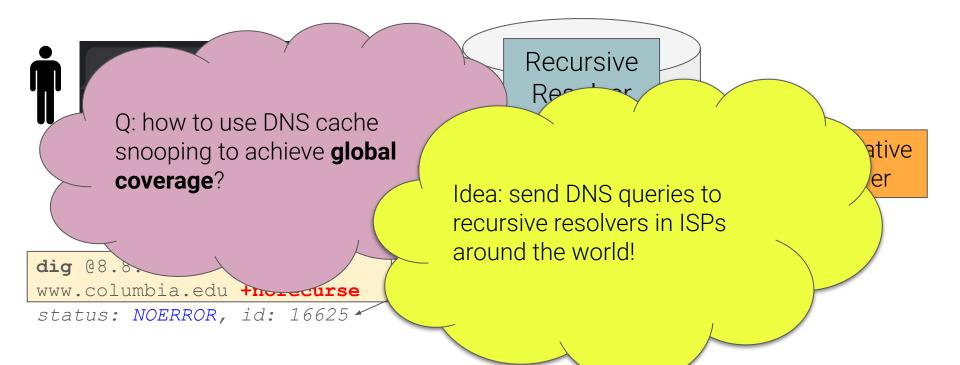




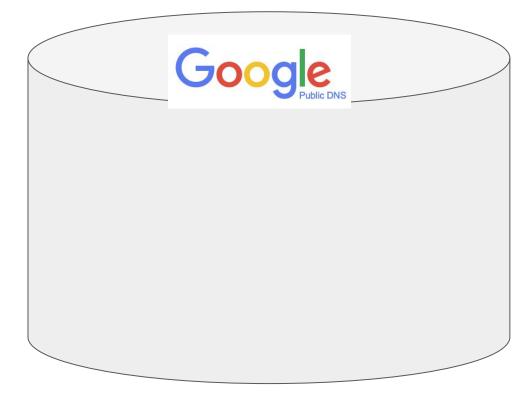
Columbia University in the City 🗙


www.columbia.edu



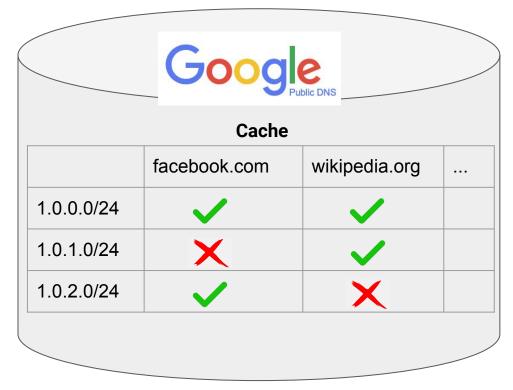


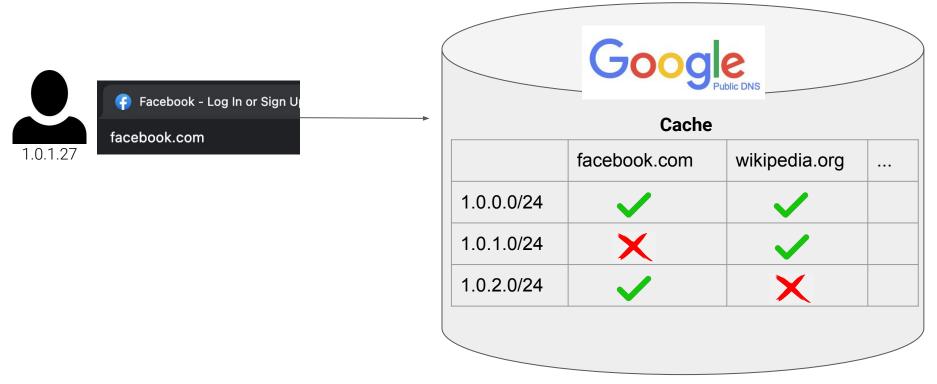
Authoritative Resolver

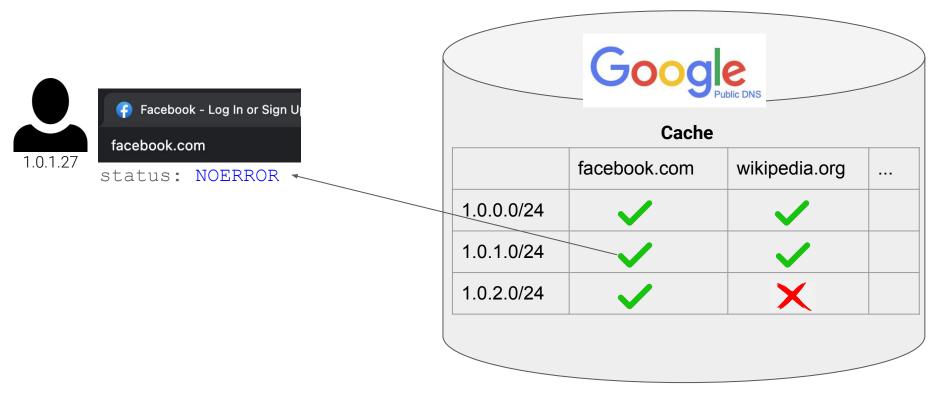


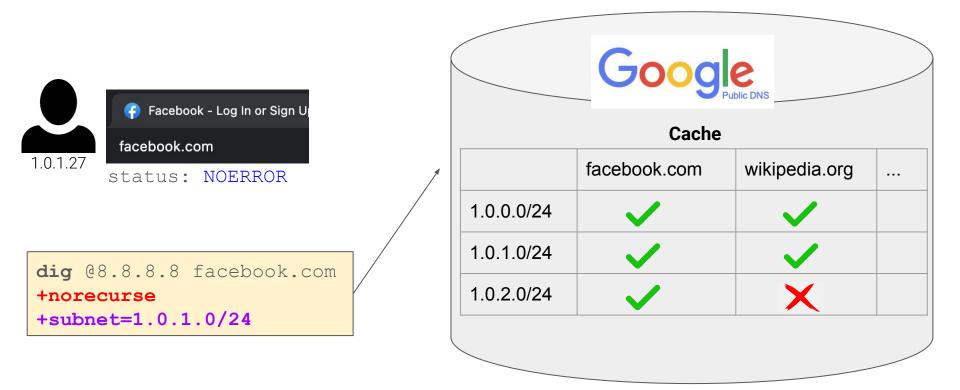
Authoritative Resolver

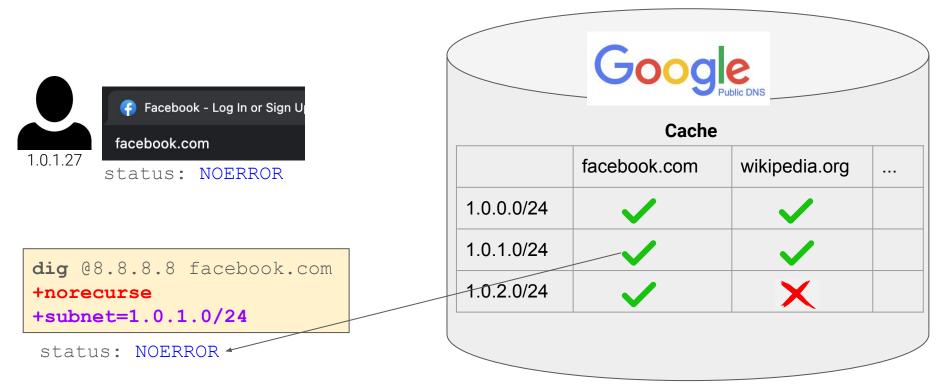
• Allows recursive resolver to include a prefix as part of the query

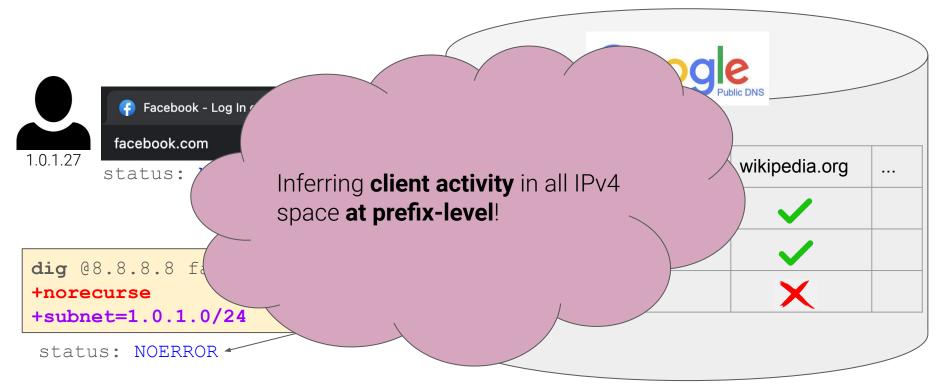

- Allows recursive resolver to include a prefix as part of the query
 - enables authoritative to map clients based on prefixes




- Allows recursive resolver to include a prefix as part of the query
 - enables authoritative to map clients based on prefixes
 - if client specifies an ECS prefix, Google Public DNS will use that instead of client's own prefix



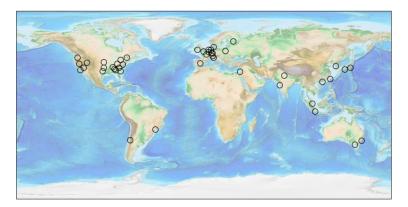

- Allows recursive resolver to include a prefix as part of the query
 - enables authoritative to map clients based on prefixes
 - if client specifies an ECS prefix, Google Public DNS will use that instead of client's own prefix
- Google Public DNS maintains separate cache entry per client prefix

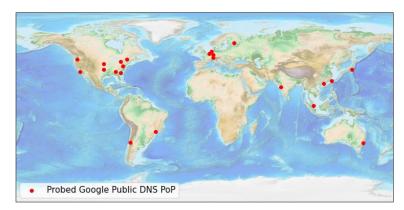


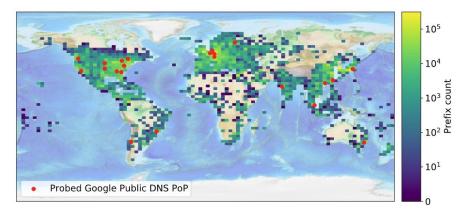




• Our goal: global coverage


- Our goal: global coverage
- Google Public DNS structure:
 - multiple PoPs with independent caches


- Our goal: global coverage
- Google Public DNS structure:
 - multiple PoPs with independent caches
 - use anycast to direct queries to PoPs


- Our goal: global coverage
- Google Public DNS structure:
 - multiple PoPs with independent caches
 - use anycast to direct queries to PoPs
- Strategy: query from vantage points around globe

- Our goal: global coverage
- Google Public DNS structure:
 - multiple PoPs with independent caches
 - use anycast to direct queries to PoPs
- Strategy: query from vantage points around globe
- We hit 22 PoPs = 95% of all Google public DNS traffic to Microsoft

- Our goal: global coverage
- Google Public DNS structure:
 - multiple PoPs with independent caches
 - use anycast to direct queries to PoPs
- Strategy: query from vantage points around globe
- We hit 22 PoPs = 95% of all Google public DNS traffic to Microsoft

Global coverage of IPv4 prefixes!

• % of Microsoft traffic volume from identified networks with client activity?

• % of Microsoft traffic volume from identified networks with client activity?

Granularity	CACHE PROBING and DNS LOGS	APNIC AS Population Dataset
AS	98.8%	92%

• % of Microsoft traffic volume from identified networks with client activity?

Granularity	CACHE PROBING and DNS LOGS	APNIC AS Population Dataset
AS	98.8%	92%
Prefix	95.2%	N/A

• % of Microsoft traffic volume from identified networks with client activity?

Granularity	CACHE PROBING and DNS LOGS	APNIC AS Population Dataset
AS	98.8%	92%
Prefix	95.2%	N/A

• Less than 1% of active prefixes identified by us do not contact Microsoft

• % of Microsoft traffic volume from identified networks with client activity?

Granularity	CACHE PROBING and DNS LOGS	APNIC AS Population Dataset
AS	98.8%	92%
Prefix	95.2%	N/A

• Less than 1% of active prefixes identified by us do not contact Microsoft

Our methodologies produce a **good approximation** of privileged dataset

• Identifying networks with clients helps researchers interpret and analyze data

- Identifying networks with clients helps researchers interpret and analyze data
- We identify networks with clients

- Identifying networks with clients helps researchers interpret and analyze data
- We **identify networks with clients** using **only public** data and **replicable** methodologies,

- Identifying networks with clients helps researchers interpret and analyze data
- We **identify networks with clients** using **only public** data and **replicable** methodologies, at **prefix-level** granularities,

- Identifying networks with clients helps researchers interpret and analyze data
- We **identify networks with clients** using **only public** data and **replicable** methodologies, at **prefix-level** granularities, and with **global-scale** coverage

- Identifying networks with clients helps researchers interpret and analyze data
- We **identify networks with clients** using **only public** data and **replicable** methodologies, at **prefix-level** granularities, and with **global-scale** coverage
- **Good approximation** of Microsoft's privileged data

- Identifying networks with clients helps researchers interpret and analyze data
- We **identify networks with clients** using **only public** data and **replicable** methodologies, at **prefix-level** granularities, and with **global-scale** coverage.
- Good approximation of Microsoft's privileged data
- We are happy to share the data/code upon request

- Identifying networks with clients helps researchers interpret and analyze data
- We **identify networks with clients** using **only public** data and **replicable** methodologies, at **prefix-level** granularities, and with **global-scale** coverage
- **Good approximation** of Microsoft's privileged data
- We are happy to share the data/code upon request

Future work: what is the relative activity levels among different prefixes?

- Identifying networks with clients helps researchers interpret and analyze data
- We **identify networks with clients** using **only public** data and **replicable** methodologies, at **prefix-level** granularities, and with **global-scale** coverage.
- **Good approximation** of Microsoft's privileged data
- We are happy to share the data/code upon request

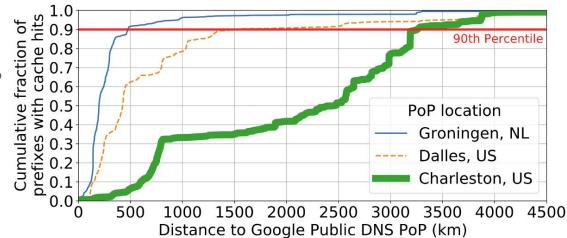
Future work: what is the relative activity levels among different prefixes? Starting point: how often do prefixes get cache hits

- Identifying networks with clients helps researchers interpret and analyze data
- We **identify networks with clients** using **only public** data and **replicable** methodologies, at **prefix-level** granularities, and with **global-scale** coverage.
- **Good approximation** of Microsoft's privileged data
- We are happy to share the data/code upon request

Future work: what is the relative activity levels among different prefixes? Starting point: how often do prefixes get cache hits

Towards a traffic map of the Internet (HotNets'21)

Thomas Koch, Weifan Jiang, Tao Luo, Petros Gigis, Yunfan Zhang, Kevin Vermeulen, Emile Aben, Matt Calder, Ethan Katz-Bassett, Lefteris Manassakis, Georgios Smaragdakis, Narseo Vallina-Rodriguez

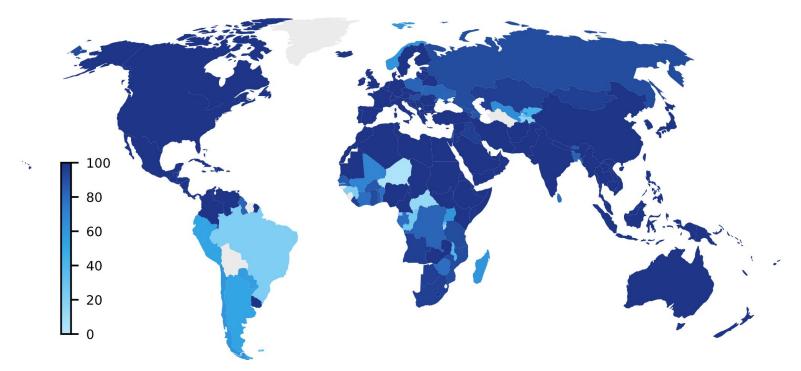

What Google Public DNS PoPs do we hit?

- dig @8.8.8.8 o-o.myaddr.l.google.com -t TXT tells us the IP address of the particular Google Public DNS PoP reached.
- Google publishes the IP range and the closest airport code for each PoP¹.

	\equiv 🔚 Google Publ	lic DNS
\$ dig @8.8.8.8 o-o.mvaddr.l.google.com -t TXT	Locations of IP address ran	
;; ANSWER SECTION:	34.64.0.0/24 icn 34.64.1.0/24 icn	172.21 172.21
1: <u>Google Public DNS: Frequently Asked Questions.</u>	34.64.2.0/24 icn 34.101.0.0/24 cgk 34.101.1.0/24 cgk 34.101.2.0/24 cgk 74.125.16.128/26 bom 74.125.16.192/26 yyz 74.125.17.128/26 cbf 74.125.17.192/26 dfw	172.21 172.21 172.21 172.21 172.21 172.21 172.21 172.21 172.21
	74.125.18.0/25 iad	172.21

Assigning prefixes to vantage points

- We randomly selected 78,637 prefixes and queried them at all vantage points.
- For each vantage point, we compute the **geographical radius** that would include **90%** of all cache-hit prefixes in the sample.
- We **use the 90% radius** to assign all 15,527,909 public /24 prefixes to vantage points to reduce probing overhead.
- For prefixes not assigned to any PoPs with above heuristics, we **assign it to the closest 2 PoPs**.


Domain names

Domain	Alexa Topsite Rank - Global (as of Sep 2021)
Google	1
You Tube	2
facebook	7
WIKIPEDIA	13

Methodology 2: DNS LOGS

- Chromium detects DNS interception by **querying for random strings** of 7-15 lowercase letters:
 - when browser starts, and
 - when device's IP address or DNS configuration changes
- These queries **should not result in cache hit** at recursive resolvers (due to lacking a valid TLD such as ".com"), so the queries **go to a DNS root server**.
- We identify chromium queries using a heuristic that **randomly generated strings should have few collisions** across all roots in one day (based on empirical study, 7 is a good threshold).
- We look for queries matching this pattern **in the DITL traces**. Those queries contain the **IP address of the querier**, which is generally the recursive resolver used by the Chromium client.

Coverage Analysis

Colorscale: percentage of country's APNIC Internet user population seen by CACHE PROBING.

Validate with Microsoft data

What our methodologies saw:

- The ASes found by us are responsible for most of the Microsoft traffic.
- Implication: the ASes missed by us are very small.

	# of ASes seen by MSFT	Volume of traffic to MSFT
CACHE PROBING	55.5%	94.9%
DNS LOGS	59.9%	97.4%
CACHE PROBING U DNS LOGS	77.2%	98.8%

Result analysis

What activity did APNIC miss, but seen by us?

- ASDB¹ (from IMC'21!) tells us what categories an AS belongs to.
- Out of the ASes detected by our methods but missed by APNIC:
 - 10,998 (**39.5%**) are **Internet Service Providers (ISPs)**
 - Outside of ISPs, 4,823 (17.4%) are hosting/cloud providers → may reflect non-human web clients
 - Outside of ISPs, 1,723 (6.2%) are schools \rightarrow likely host human users

1: Ziv et al. "ASdb: A System for Classifying Owners of Autonomous Systems".