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Abstract 
Border Gateway Protocol (BGP) anomalies, such as hijacking, is currently growing 

in trend due to limited detection capabilities. BGP is the backbone of the Internet 

that determines how traffic is routed through networks, also known as 

Autonomous Systems (ASes). BGP hijacking maliciously reroutes Internet traffic, 

causing Denial of Service (DoS) to major Internet Service Providers (ISP) or 

redirection attacks to Internet users. Current literature has proven to detect BGP 

anomalies using machine learning methods. However, the features used to train 

these machine learning models are node-level features that do not consider the 

network structure or relationships. Therefore, in this project, an approach to 

extract BGP updates to build a network graph is proposed. Then, centrality 

information is used as a feature to build an anomaly detection tool using machine 

learning. The proposed method has been validated on a BGP incident, BGP 

CenturyLink outage to show capability in detecting individual networks and 

defined group of network anomalies. Furthermore, determination of the anomaly 

source has shown to be capable in the proposed method. 
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Chapter 1 

Introduction 

With more applications delivered via the Internet, the greater the assumption is for the secure 

transmission of information. More specifically, the routing protocol of the Internet, Border 

Gateway Protocol (BGP) must be secure to transfer information between different networks. 

Operating as the backbone of the Internet, BGP is the routing protocol used for transferring 

information across different Autonomous Systems (ASes) on the Internet. AS defines a set of 

IP prefixes (Internet Protocol network addresses) that belong to a network or a group of 

networks. The presence of BGP routers is known through BGP updates transmitted amongst 

routers across the Internet. 

Over the past years, there have been many incidents caused by anomalous BGP 

updates. BGP anomalies are caused by events such as hijacking. This is where attackers 

impersonate ASes by advertising false BGP routes to maliciously reroute Internet traffic. In 

worst cases, BGP hijacking led to a loss of connectivity for domains such as panix.com [1], an 

Internet service provider (ISP) in the United States of America (USA). Unintentional BGP 

hijacking, such as misconfiguration events, is more commonly seen. In a well-known example, 

the Pakistan Telecom incident, invalid BGP routes were advertised with the intention being to 

ban youtube.com [1]. However, a misconfiguration led to redirecting multiple ASes’ youtube.com 

traffic to the Pakistan AS, causing a Denial of Service (DoS) for the Pakistan AS and a loss of 

connectivity of youtube.com for the affected ASes. Another BGP anomaly example is the global 

BGP CenturyLink outage induced by the misconfiguration of BGP routes [1]. BGP anomalies 

have caused severe outages for Internet users and revenue loss for many businesses across the 

globe. Therefore, the detection of BGP anomalies is crucial when routing Internet traffic. 

 1.1. Problem Statement 

From literature reviews, the survey by Al-Musawi et al. [2] had identified to provide evidence 

in detecting past BGP anomalies using the methods of time series, statistical pattern 

recognition, historical BGP, reachability check and machine learning BGP. This research uses 

machine learning BGP as it allows for automation and optimization of model training to detect 

anomalies compared to other techniques. In existing BGP anomaly detection methods, features 

such as the number of BGP announcements, average AS path length and average edit distance 

are used. However, such features cannot be comprehensive because there is no consideration 

of the entire network structure and relationships, given that new types of BGP anomalies are 

always being introduced. As a result, these features are unable to detect a wide range of BGP 

anomalies, including anomalies that have not been seen before. 
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All BGP anomalies historically have shown changes in the network structure and thus, 

this project captures the change in structure to build a BGP anomaly detection method. This 

will allow the ability to capture a wide range of BGP anomalies. Instead of using ad-hoc 

features, a network structure is built using BGP updates. Then, centrality features are extracted 

to model the network structure. This is passed into two machine learning algorithms to detect 

anomalies. A machine learning algorithm such as Autoencoders is used to detect anomalies in 

the entire network. Autoencoders is a model that rebuilds inputs and aims to minimize the 

reconstruction error. The anomaly score is measured based on the reconstruction error where 

it has shown to be effective in the literature [2]. Another machine learning algorithm such as 

Univariate Gaussian (UG) is used to detect anomalies in individual networks. UG computes 

the anomaly score as the probability of each centrality in respect to the trained normal 

Gaussian distributions. Based on current literature, the use of centrality features to detect BGP 

anomalies has never been explored. 

 1.2. Project Goals 

The goals of this project include: 

1. Map a core router’s BGP updates into a network graph. 

2. Extract graphical features from the network graph to pass into a machine learning 

model to detect anomalies. 

3. Determine the source of anomaly upon detection. 

 1.3. Contributions 

This project offers the following contributions: 

• Enhanced efficiency of searching network prefixes using trie data structures. 

• Use of graphical features from the network to detect anomalies. 

• Reporting the severity of the incident using an image which shows the number of 

ASes affected. 

• Corroborating multiple core routers to detect anomalies. 

 1.4. Organisation 

The remainder of the report is structured as follows: 

• Chapter 2 will discuss the existing solutions to the problem to identify the differences 

to the proposed solution. 

• Chapter 3 will discuss the design of the solution. This chapter involves a discussion 

of the various design decisions.  

• Chapter 4 will provide details on the solution implementation. 

• Chapter 5 will evaluate the solution to verify its correctness.  

• Chapter 6 will conclude and identify future work to be conducted on the project. 
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Chapter 2 

Background 

This chapter provides background information regarding the importance and the key features 

of BGP. Moreover, the indicators of BGP anomalies and various detection methods will be 

discussed to determine the improvements that should be applied to detect BGP anomalies. 

2.1 BGP  

BGP is the essential backbone protocol that connects ASes within the Internet to enable 

network traffic to be routed through ASes. BGP routers are positioned on the border of each 

AS to deliver traffic. BGP operates on the links between such border routers to deliver traffic. 

 BGP routers deliver traffic by searching for the next-hop router (next router in the path 

to route the traffic) in its routing table to forward the traffic to. To allow the delivery of traffic, 

BGP routers must advertise their presence to other BGP routers. All BGP routers are initially 

unaware of the presence of other routers, thus, routing of traffic is incapable as the next-hop 

router cannot be determined to forward the traffic to its specified destination. The presence of 

BGP routers is advertised by BGP bviews and updates. BGP bivews are an infrequent periodic 

exchange (usually once every hour) of the routing table of a BGP router. Routes may change 

more frequently than hourly timeframes, hence, BGP updates are propagated (usually in 15-

minute periods) to advertise routable paths. BGP bviews and updates are propagated router to 

router across the Internet. This is because it is infeasible to have every BGP router connected 

to every other BGP router in the Internet. The key attributes of BGP bviews and updates as 

noted in RFC4271 [3] include: 

1. Withdrawn Routes – List of IP address prefixes for routes that should be withdrawn.   

2. Announcement Routes – List of IP address prefixes for routes that should be added to 

the advertising node.   

3. Source and Destination – Defines the origin of the path location. 

4. AS_PATH – ASes of the path 

5. NEXT_HOP – The IP address of the next router from the advertising BGP router to 

forward the message to the destination. 

6. AGGREGATE – Optional and used along with ATOMIC_AGGREGATE. Includes the 

ASN and IP address of the router that originated the aggregated route. 

7. LOCAL_PREF - Used by a BGP router to determine the exit path for the AS.  

8. ATOMIC_AGGREGATE – Optional. Informs BGP routers that the advertising BGP 

router is using a less specific or aggregated route to a destination.  

Commented [LH2]:  
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9. Network Layer Reachability Information – List of IP address prefixes that specify how 

to reach prefixes. 

 Routing policies that are used to route traffic can differ for ASes. This is due to political 

and/or efficiency reasons where the neighbours of each BGP router (BGP peers) must be 

formally established using contract agreements. However, advertisements of misconfigured 

or redirected routes are possible as observed in events such as DoS of YouTube by Pakistan 

and the BGP CenturyLink outage [1].  

2.2 BGP Anomalies 

BGP updates are classified as anomalous when the path contains an invalid AS or reserved or 

invalid IP prefix(s). The BGP update is also considered anomalous if the prefix advertised is 

from an invalid AS. When the AS-PATH is not geographically existent or the routing policy is 

uncommon [4], the BGP update is also considered anomalous [5]. A network may be 

anomalous through multiple BGP updates that reroute traffic in abnormal routes. Events such 

as outages and hijacks are examples where the traffic in a network is anomalous. 

2.3  BGP Anomaly Detection Methods 

There are currently various methods to detect BGP anomalies. Methods such as time series, 

statistical pattern recognition, historical BGP, reachability check and machine learning BGP 

can be used. However, such methods are not widely used in the industry. Hence, this section 

investigates the underlying problems of the current BGP detection methods to determine 

potential enhancements to detect BGP anomalies. 

 

2.3.1. Time Series 

The earliest method used by Prakash et al. [6] and Mai et al. [7] to detect BGP anomalies is time 

series which gained popularity as it can find characteristics of abnormal behaviour within a 

set of BGP updates collected within a period. This method can detect anomalies in high-

intensity short bursts (hours) or sustained low intensity (months) of BGP updates from the 

affected ASes involved in the Slammer Worm attack [6, 7]. However, even with over two years 

of data used, only a limited number of incidents can be detected. This is because statistical 

features such as the number of announcements and message volume are used. Such features 

have a distinct behaviour for a specific type of anomaly, thus, a wide range BGP anomalies are 

unable to be detected, including anomalies that have not occurred before. This proves that 

statistical features are unable to detect all and new types of anomalies. Furthermore, an 

analysis for a copious number of BGP updates is required, thus, this method is unable to detect 

anomalies in real-time.   

2.3.2. Statistical Pattern Recognition 

Building upon the time series method, Huang et al. [8] and Deshpande et al. [9] used a statistical 

pattern recognition method that is successful in determining existing BGP anomalies as it can 

find relationships amongst each BGP update. By correlating events, this method can detect, 

identify and differentiate BGP node and link failures [8, 9]. The use of features such as AS-

Commented [WS3]: This section can be the intro for 2.2 before 
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path and edit distance were found to be useful to determine the behaviour of the network 

topology. On the contrary, new types of BGP anomalies are unable to be detected because such 

features do not consider the entire network topology as features are looked at independently 

in an instance. Furthermore, without the construction of a topology, relationships amongst 

AS-path and edit distance cannot be accurately described. Thus, this supports that the network 

topology must be built using BGP updates to accurately describe the relationships present in 

the graph. The anomaly source cannot be feasibly found as the static router configuration 

cannot be obtained due to political and security reasons [8]. Furthermore, this method is 

incapable of real-time detection due to the limited range of historical data used to correlate 

events [9].  

2.3.3. Historical BGP 

To counteract limitation of identifying new types of BGP anomalies, Haeberlen et al. [1] and 

Shi et al. [10] presents a whitelisting approach of using historical BGP data to determine the 

abnormality of new BGP updates. This approach validates new BGP updates using a history 

of Routing Information Base (RIB) and BGP updates. In contrast to the time series and 

statistical pattern recognition methods, this method was able to detect anomalies in real-time 

and identify the root cause [1, 10].  BGP prefix hijacks can also be detected, where an attacker 

impersonates a prefix belonging to a victim AS [10]. However, this method is unable to detect 

sub-prefix hijacks, link failures and indirect anomalies as the feature of prefix origin change is 

not comprehensive to reflect all changes in the network topology [1]. Furthermore, the usage 

of RIB in this method is not feasible as many ASes do not reveal BGP updates and their routing 

policies for security and political reasons.  

2.3.4. Reachability Check  

In contrast to methods of time series, statistical pattern recognition and historical BGP, the 

reachability check method utilised by Zheng et al. [11] and Hu et al. [12], gained attraction as 

it is less computationally expensive. This method uses the data plane (that forwards or 

processes packets in a router) to check the reachability of a prefix. This method can detect 

prefix hijacks in real-time as a single hop count calculation is only required for each BGP 

update [11]. However, due to the large number of attacks that do not change the reachability 

of prefixes, this method is incapable of detecting sub-prefix hijacks, link failures and indirect 

anomalies [11]. 

2.3.5. Machine Learning BGP 

All prior methods mentioned have not proven to allow the capability for a method to find 

complex patterns in data that humans cannot discover. To counteract this limitation, machine 

learning BGP anomaly detection methods can be used. This is where a machine learning model 

is trained using existing BGP updates to detect anomalies within a network. This method is 

sought-after as the objective function for modelling abnormal and normal behaviour can be 

found and optimized automatically. Currently, this method uses statistical or node-level 

features such as the number of announcements, withdrawals or the average AS path length to 

determine anomalies [13, 14, 15, 16]. The ability to use historical data to automatically train the 

machine learning model enables the method to detect direct and indirect anomalies in past 
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events [13, 16]. However, the anomaly source cannot be determined using this method [14, 15, 

16]. This suggests that the source and new anomalies are unlikely to be detected as the 

relationships within the network are not considered due to the usage of node-level features. 

This reinforces that graph-level features must be extracted to capture a wide range of BGP 

anomalies, including anomalies that have not been observed before.  

2.4 Analysis and Findings 

Methods of time series, statistical pattern recognition, historical BGP, reachability check and 

machine learning BGP present potential methods for BGP anomaly detection. The capability 

of anomaly detection using patterns recognised in historical data is evident as shown in Table 

1. However, an inverse relationship between real-time detection and feature extraction in 

historical data is also observed in Table 1.  

 The current literature shows that BGP anomaly detection methods are incapable of 

detecting anomalies as unsuitable features are used to determine anomalies in the network. 

No network topology is constructed to accurately derive the relationships and model the 

structure present in the graph. Features are not comprehensive as there may be new anomalies 

that escape these features. However, such features still impact the network topology. Thus, 

capturing the network topology is vital. By capturing the features that represent the topology 

behaviour, a simple model can be used to learn the correlations of normal activity for 

determining anomalies. Hence, this research proposes a method to use BGP updates to build 

the network structure to extract graph-level features for determining anomalies in real-time. 

As the network topology is complex and high dimensional, a method such as machine learning 

BGP that can automatically detect correlations in such data is suitable in time and accuracy. 

Hence, machine learning BGP will be used as a detection tool to enable automatic 

identification of normal and abnormal features in real-time. 

Table 1 Summary of BGP Anomaly Techniques 

Method Effectiveness Limitations 

Time Series Able to detect anomalies using 

data within a fixed period. 

Incapable of real-time detection 

Statistical 

Pattern 

Recognition 

Able to correlate events to 

detect anomalies 

Incapable of real-time detection. 

Incapable of determining the anomaly 

source 

Historical 

BGP 

Able to detect prefix hijacks. Unable to detect sub-prefix hijacks.  

Unable to detect link failures and indirect 

anomalies. 

Reachability 

Check 

Able to detect prefix hijacks. Unable to detect sub-prefix hijacks, link 

failures and indirect anomalies. 

Machine 

Learning 

BGP 

Capable of detecting occurred 

BGP anomalies. 

Incapable of detecting new BGP 

anomalies. Unable to determine the 

anomaly source. 
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Chapter 3 

Design 

The design of the anomaly detection method concentrates on graphical feature extraction from 

BGP updates. This includes the construction of the network graph and the selection of graph-

level features. This chapter highlights the design considerations of time, budget and space 

concerning the potential use cases of the system to formulate the overall process of graphical 

feature extraction from BGP updates. 

 3.1. BGP Updates 

To formulate the graphical view of the network, appropriate BGP update attributes must be 

selected. A BGP router will advertise BGP updates to its peers. A BGP update message as 

shown in Appendix A is used to advertise the feasible routes or withdraw unfeasible routes 

from the advertising BGP router.  

The graph structure is formulated using the determination of each AS or node’s direct 

connections. Each node’s direct connections can be determined through BGP update 

attributes. Attributes must include the AS Number (ASN) to allow identification of the 

corresponding node within the graph.  

As shown in the RFC4271 [3] BGP update attributes discussed in Section 2.1, the 

AS_PATH attribute can be used where each node present in the path represents a direct 

connection to the next node in the path. The source and destination nodes within each update 

can also be included as a node in the graph. Each node can have connections added or removed 

within each BGP update. Therefore, the announcement and withdrawal attributes should be 

used respectively to ensure that connections are added or removed appropriately from the 

corresponding nodes. The AS_PATH, source, destination, announcement, and withdrawal 

attributes are used to construct the network graph.  

 3.2. Graph Construction 

The selected BGP attributes in Section 3.1 are used to construct the network graph which 

allows features to be determined within the graph. 

3.2.1. Data Structures 

After constructing the network, the graph must then be represented in a form to train a 

machine learning model. The representation must model the graph structure and the node 

relationships to capture a graph-like form of the network. To efficiently store the nodes, 

Hamiliton et al. [17] suggested neighbourhood aggregation, where nodes’ neighbours can be 

aggregated into clusters or neighbourhoods, where each node would only have links to the 
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neighbourhoods instead of all neighbours. However, aggregation of neighbours requires 

clustering and node classification where initial seeds to train the classification may not be 

sufficient within the BGP updates.  

 Another option to store 

the neighbours of a node that does 

not require clustering and node 

classification is to use adjacency 

lists, in which each node has a 

dictionary of its neighbours. 

Adjacency lists yield an efficiency 

of O(max degree of the graph) when 

finding all edges of a node. 

Furthermore, the use of adjacency 

lists requires less storage space in 

comparison to adjacency matrices (all nodes have an array of all connection points to other 

nodes). Therefore, adjacency lists can help increase efficiency and reduce the storage space of 

the network graph.  

During announcements and 

withdrawals of BGP routes, a BGP 

router will add or remove routes 

respectfully. Therefore, the IP addresses 

of an AS must be present in each node 

to find withdrawal or announcement 

routes. Each node stores a dictionary of 

IP addresses as an AS may compose of 

multiple IP addresses. A naïve 

approach is to use a brute force search 

method where all nodes’ IP addresses 

are searched when an announcement or 

withdrawal message is encountered. 

However, this yields an efficiency of 

𝑂(𝑛2), where n represents the number 

of nodes in the graph. A better approach 

is to use a trie structure to store all IP 

addresses with their associated nodes. 

For example, when storing the IP 

addresses of 172.168.2.1, 173.168.2.1 and 172.168.3.1, the trie structure will compute the tree as 

shown in Figure 1. By using a trie structure, this yields a better efficiency, O(1). The pseudo 

code for building the graph using BGP updates is shown in Algorithm 1. 

 3.3. Features 

Graphical features are extracted from the constructed network graph and used in the machine 

learning algorithms to determine whether the BGP updates are abnormal. In this study, data 

Figure 1 Example of a Computed Trie Structure for 

172.168.2.1, 173.168.2.1 and 172.168.3.1 
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from the CenturyLink outage are used as it was a major BGP misconfiguration event in 2020 

that brought down many Tier 1 ASes.   

 Graphical features such as the connectivity of nodes and node centrality can be used 

to determine anomalies. The connectivity of nodes can be used as the topology of the network 

changes significantly in BGP anomaly incidents. For example, over 1000 connections were 

changed during the BGP CenturyLink outage. However, using the connectivity of nodes as a 

feature is expensive in storage and computation. Clustering coefficients within the network or 

the level of overlapping neighbourhoods can also be used. Clustering coefficients measure the 

level at which nodes in the graph are clustered together. For example, in the BGP CenturyLink 

outage, nodes were more compactly clustered as redirection of traffic to other ISPs were 

required to compensate for the loss of the CenturyLink AS. However, clustering coefficients 

requires the definition of neighbourhoods which is inaccurate using simple methods such as 

k-means clustering. Although aggregation of neighbours by prefixes, articulation points, or 

spectral clustering [18, 19] can be used to summarise the connections of nodes, such methods 

lose individual network information and do not have sufficient information or are 

computationally infeasible due to the presence of over 60,000 nodes present in the network.  

 Simple features can be extracted practically but lack in the ability to find a wide range 

of BGP anomalies. A simple feature such as the average AS-path length in the network can be 

used, where multiple AS paths can change in distance when a major AS is down. However, 

this feature is unable to detect anomalies in hijacking incidents where the average AS path 

length does not change significantly [6]. Another simple feature such as the number of 

changed AS paths in a period can also be used but the number of AS paths changed may be 

minimal in hijacking incidents where only a small number of victims are targeted [6]. This 

suggests that features that can be feasibly computed and combine the connectivity of nodes 

regarding the entire network must be used. 

A computationally feasible graphical feature that can reflect a node’s presence in the 

entire network is node centrality. Node centrality represents a node’s position within a 

network based on a specified measure/metric. The BGPlay visualisation during the 

CenturyLink outage in Appendix B shows that the node centralities changed significantly. 

This is because a large portion of the traffic was rerouted, leading to several nodes having 

more or fewer paths routing through them, thereby changing their centrality values. Hence, 

node centrality can be used as a feature in the machine learning algorithm to detect anomalies 

because a large difference in the centrality of a node can indicate abnormal behaviour [19]. The 

key centrality metrics include: 

i. Betweenness Centrality – Number of paths that pass through a node. 

ii. Eigenvector Centrality – Combines the importance and number of immediate 

neighbours of a node. 

iii. Degree Centrality (DC) – Number of immediate neighbours of a node. 

iv. Closeness Centrality (CC) – Inverse distance to all the reachable neighbours of a 

node. 

It is impracticable to use the betweenness and eigenvector centralities as features as 

they are infeasible in computation. Betweenness centrality requires all possible paths to be 

Commented [WS4]: Some elaboration/explanation of this 
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enumerated which is incomputable 

due to the presence of over 60,000 

nodes in the network. The calculation 

of the eigenvector centrality requires 

the computation of the adjacency 

matrix which is unachievable due to 

the memory error generated from 

creating a large matrix size for over 

60,000 nodes present in the BGP 

updates. Adjacency lists cannot be 

used as a matrix multiplication is 

required when computing the 

eigenvector centrality. 

In contrast, DC and CC were selected 

as graphical features as they are feasible to compute. DC is inexpensive to compute as it only 

requires enumerating the number of immediate neighbours of each node. CC is also 

computationally inexpensive as enumerating the distance to all reachable neighbours of a 

node is only required. The distance to all reachable neighbours is calculated using Dijkstra's 

algorithm to allow efficient computation of distances. Although the A* algorithm [18] can 

instead be used for greater efficiency, the generation of a heuristic is dependent on the 

geolocation of the nodes which is unobtainable due to insufficient information in BGP 

updates. The pseudo code for extracting centrality features is shown in Algorithm 2. 

 3.4. Summary 

The design constraints presented in this chapter show that CC and DC are suitable in time and 

computation to detect anomalies within a network. Suitable BGP attributes are used to build 

the graphical structure of the network. The graphical structure of the network utilises 

adjacency lists and trie data structures to enhance the efficiency of the solution. A 

corresponding flow diagram of the implementation is also shown in Figure 2. The 

implementation of the proposed design will be discussed in the next chapter.  

Figure 2 Workflow of Proposed Anomaly Detection Method  
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Chapter 4 

Implementation 

This chapter discusses the implementation of feature extraction using the designs from 

Chapter 3. Implementation of the machine learning models to process the extracted features 

for anomaly detection is also discussed. Details of the tools, parameters and implementation 

considerations are discussed in this chapter. 

 4.1. Processing Data 

4.1.1. Programming language 

There are multiple programming languages to process BGP updates into a graph-like 

structure. A programming language such as Java can be used but it is incapable of processing 

a copious amount of data. For example, when processing a single BGP update using Java, a 

Java Heap Space Memory exception was raised. This is because Java is an object-orientated 

language that stores additional attributes such as the object type and its features. A more 

suitable language is Python which is a general-purpose language that does not store the object 

type. This leads to less memory stored by the program, reducing the likelihood of Out-Of-

Memory exceptions.  

4.1.2. Input Data 

To build the structure of the network graph, BGP bviews and updates were used. Firstly, bviews 

are exchanged amongst BGP routers. Then, BGP updates are exchanged after a BGP bview, that 

notify other routers of routable paths. Hence, a network graph is constructed after one bview 

is received. The next subsequent BGP update is built upon the graph generated from the bview.  

Each BGP update that occurs after is built on top of the graph from the previous update. Events 

occurring before and after the anomaly event are extracted to produce respective normal and 

abnormal features.  

 4.2. Generating Features 

There are more than 60,000 centralities that can be passed into the machine learning algorithm. 

However, this is infeasible and not applicable in many cases where AS owners may only want 

to detect anomalies within their networks. Therefore, the New Zealand core router (AS38022) 

and its neighbours (up to two hops away) were used as input features which yielded 4000+ 

nodes. To further reduce the number of nodes and capture the necessary information, non-
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articulation points were eliminated from the graph. Articulation points are crucial points in a 

graph that if removed would disconnect the network.  

 To compute the articulation points in the graph, there were over 60,000 nodes to be 

processed. Hence using the recursive method of the articulation points algorithm led to 

exceeding the limit for recursive call-backs. Therefore, the iterative version of the articulation 

points algorithm was used. The iterative version used a stack that had a larger memory space 

and did not involve any recursive call-backs.  

The centrality values were calculated based on the entire network using the Networkx 

[20] library, instead of subnetworks. The disadvantage of calculating the centralities using a 

subnetwork is that information within the graph can be overlooked. Subnetwork features can 

be an incorrect representation of the entire network. Each centrality value is calculated using 

the following formulas: 

i. 𝐷𝐶(𝑢) =
𝑛

𝑁−1
 , where n represents the number of immediate neighbours of a node u and 

N represents the total number of nodes in the graph [19]. 

ii. 𝐶𝐶(𝑢) =  
𝑛−1

∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢,𝑣)𝑛−1
𝑣=1

𝑛−1

𝑁−1
 , where n represents the number of reachable neighbours 

of a node u and N represents the total number of nodes in the graph [21]. 

To ensure that the result is proportional for graphs of varied sizes, the centrality values are 

normalised by the number of nodes in the graph [19].  

 The CC formula suggested by Wasserman et al. [21] is used as it ensures that the CC 

for different sized network graphs can be comparable. For example, in the original formula of 

CC, as shown in Appendix C, the CC is only scaled by the number of reachable neighbours of 

a node. There is no consideration on the total amount of nodes in the graph. This means that 

the CC would not be weighted equivalently to the size of the network graph, where the same 

CC (computed using the original formula in Appendix C) would compute the same anomaly 

score in a large and a smaller sized network graph. This is incorrect as the anomaly score for 

that AS should be larger for a smaller sized network graph, as the impact of that AS is larger 

in a smaller sized graph with the same reachable neighbours [21]. Reachable nodes do not 

correspond to the total number of nodes in the graph as some nodes may be disconnected from 

the graph. For example, as shown in the network graph before, during and after the BGP 

CenturyLink outage in Appendix B, some nodes are not connected to the graph. Hence, the 

CC formula as suggested by Wasserman et al. [21] which incorporates the scaling ratio of a 

node’s reachable neighbours and the total number of nodes in the graph is used. 

 4.3. Machine Learning Models 

To detect anomalies in the extracted graphical features, multiple machine learning algorithms 

can be used. To detect anomalies, the machine learning model must identify the main patterns 

in normal data. The main patterns can reveal outliers or anomalies in the dataset. A commonly 

used anomaly detection method that captures complex relationships amongst the datapoints 
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in the dataset is Autoencoders [22]. To detect individual network anomalies, a less 

computationally expensive method than Autoencoders, such as UG, is used [23]. 

4.3.1. Autoencoders 

Autoencoders are a type of Neural Network (NN) that aims to learn a reconstruction of data. 

Anomalies can be detected through the reconstruction error generated in the learnt normal 

model. If the reconstruction error is greater than a threshold, it will indicate anomalies.  

4.3.1.1 Training parameters 

Multiple training parameters are used to define the Autoencoders model. A training 

parameter is epochs that determine the number of times all the training instances are used in 

the training process. The error between the inputs and outputs must minimise or converge 

during the training process. However, the training process must not cause overfitting where 

the error in unseen inputs increases as the number of epochs rises. Therefore, the number of 

epochs chosen was 100 as this allowed convergence as shown in Figure D.1 and did not overfit 

the model.  

Another training parameter, batch size is used. The batch size must not be too small 

(inability to converge to a global optima for the reconstruction error) or be too large (poor 

generalization due to inefficient stochastic gradient descent). Therefore, a batch size of 80 was 

selected as it averaged the error for each batch and applied the corresponding adjustments to 

the NN weights. As shown in Figure D.1, the convergence of the error rate was achieved.  

A threshold is used by the machine learning algorithm to determine whether an 

instance is abnormal. Hence, the threshold can be defined by the maximum error from the 

validation data which is defined as two days before the anomaly incident. For example, in 

reporting the entire network detection from the New Zealand core router, Figure D.2 shows 

that normal behaviour has a maximum error of 0.036. Therefore, any value that exceeds this 

error should be defined as anomalous.  

Each feature’s importance may be different according to the feature value. However, 

each feature should be considered as equal importance as a difference in any node in the 

network can indicate abnormal behaviour. Therefore, each feature, denoted by x, is normalised 

using the formula, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 =  
𝑓𝑒𝑎𝑡𝑢𝑟𝑒−𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
. Figure D.3 and D.4 show that after 

normalizing the values, the anomaly score is more prominent in the anomaly period from 08-

30-2020 10:00 UTC onwards. 

4.3.2. Univariate Gaussian 

The main disadvantage of Autoencoders is that the detection of anomalies for a specific AS is 

not addressed. Identification of problematic ASes is useful for network administrators to avoid 

routing to such ASes in an abnormal event. UG is capable of modelling each AS as a Gaussian 

distribution to detect anomalies. UG can also capture second-order statistics with a much 

lower computational overhead than Autoencoders. Hence, UG is used. UG is a probabilistic 
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method that models a distribution directly as a PDF (probability density function), where a 

low PDF indicates an abnormal AS.  

4.3.2.1 Parameters 

Building a UG (one component) or a Gaussian Mixture Model (GMM) (more than one 

component) involves selecting the number of components. Too few components, the model 

will under-fit (actual clustering structure in the data will be missed); too many, the model will 

over-fit (inability to detect anomalies in a new testing set). An incorrect number of components 

can lead to incorrect classification of normal and abnormal centralities. Hence, the number of 

components is predicted by 

gathering the anomaly scores on the 

day of the anomaly event. As shown 

in Figure 3, the model with 

components one, two, and three 

show an increase in the anomaly 

score during the anomaly event and 

are similar in results, where neither 

under- nor over-fitting is observed. 

However, it takes significantly less 

time to compute one distribution 

than two or more distributions. This 

is because there are fewer Gaussian 

distributions to optimize, thus, the number of epochs required will be less. Hence, the number 

of components chosen is one, where the UG model is selected. This provides the fastest 

solution in comparison to GMM which has two or more components. 

The PDF for a data point that consists of all the features at a period can be calculated 

using the product of the estimated probabilities for all test features. However, as there are 

many probabilities to be summed, this can result in an extremely small probability that may 

not be representable due to the limits in the decimal length floating-point numbers. The 

anomaly score is then the sum of log probabilities over all features. The equation, 

 𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑆𝑐𝑜𝑟𝑒(𝑣) =  ∑ log (𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑣𝑖))𝑁
𝑖=0 , where 𝑁 represents the number of features 

and v represents a single feature is used to calculate the anomaly score for a data 

point. Individual anomaly scores for each AS can be calculated using the log-likelihood of each 

corresponding feature.  

 4.4. Summary 

The implementation details such as parameters, algorithms and libraries discussed in this 

chapter reflect the time, computation and correctness considerations presented in Chapter 3. 

The evaluation of the implemented artifact will be discussed in the following chapter.  

Figure 3 GMM Components Comparison 
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Chapter 5 

Evaluation 

Following the implementation of graphical feature extraction, an evaluation of the correctness 

of the proposed anomaly detection method using the extracted features is carried out. The 

correctness of the model is evaluated against the detection of abnormal behaviour during the 

BGP CenturyLink outage from 08-30-2020 10:04 (UTC). This helps to determine whether the 

learnt model can correctly classify anomaly incidents in the dataset. Anomaly detection for the 

entire network and specific ASes for the New Zealand (NZ), Japan (WIDE) and Serbia (SOXRS) 

core routers on the day of the anomaly event will be evaluated using Autoencoders and UG 

to evaluate the correctness of the proposed anomaly detection method. The importance of the 

evaluation allows validation of the detection method and identify the suitability to real-world 

applications.  

 5.1. Evaluation Method 

To evaluate the accuracy of the detection method, experiments were run using data for the 

entire network (up to two hops away from the NZ core router). This enables the system to 

identify network-wide anomalies. This also enables earlier anomaly detection capabilities as 

BGP updates are propagated sequentially on the Internet, hence anomalies occurring in one 

part of the Internet can indicate a potential spread of BGP anomalies.  

Although a network-wide analysis can indicate anomalies for the entire network, the 

source or infected ASes must be identified to ensure that traffic is not routed to such networks. 

This helps to prevent DoS for Internet users. Individual network monitoring can also be more 

suitable to ISPs who do not require or have sufficient computing power or resources to 

monitor an entire network. In consideration of the BGP CenturyLink outage which involves 

AS38022 (NZ core router) and AS3561 (BGP CenturyLink router), experiments will be run 

using BGP updates for each AS. This helps to evaluate the detection capabilities for the 

anomaly source and its neighbours. 

To determine the correctness of the detection method, all experiments encompass a plot 

of the anomaly scores on the day of the anomaly event from 08-30-2020 00:00 UTC to 23:59 

UTC. The results should expect a rise in the anomaly score on the day of the anomaly event. 

As the data are unlabelled, it is possible that the network was unstable before the anomaly 

event, hence a rise in the anomaly score before the expected anomaly breach is possible. 
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 5.2. Results  

A series of experiments were run using data of the entire network and the individual networks 

of AS38022 and AS3561. Experiments included an evaluation of the DC and CC features used 

for determining the anomaly score. 

 5.3. Entire Network Anomaly Detection 

Determination of whether an entire network is anomalous allows ISPs to have a generalised 

view of a network’s stability. This allows faster determination of anomalous behaviour in 

comparison to monitoring multiple individual networks. As this project is New Zealand 

based, the anomaly for the entire network is defined by the NZ router and its neighbours (up 

to 2 hops away). Detection for other countries can also be achieved by changing the definition 

of the entire network.  

 

 5.3.1 Closeness Centrality 

Graphs from Figures 4(a) and 5(a) show a rise in the anomaly score before the expected time 

breach. This is because the network is unstable during the anomaly period as shown in 

Appendix B, with a significant change in reachability distances for many nodes in the network. 

As shown in Figure 6(a), a later detection is observed for SOXRS as it is further away from the 

source of the incident in comparison to WIDE and NZ. BGP updates are transferred router to 

router, hence routers that are further away will experience a delay in receiving update 

messages. This suggests that to increase the detection accuracy of an anomaly event, multiple 

core routers’ views are necessary to gain a wider picture of the activity on the Internet. The 

selection of core routers to monitor can be determined by the geolocation (where a sparse set 

of core routers can enable better anomaly detection capabilities around the world) and the 

trustworthiness of the country (using a contract agreement). 
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 Network administrators need to determine the severity of the incident using the 

number of nodes affected. Severity level determines the privilege escalation procedure where 

the appropriate number of resources must be assigned to remediate the incident. However, 

the graphs as shown in Figures 4(a), 5(a), and 6(a) are unable to reflect the severity of the 

incident, thus corresponding severity images which show the number of ASes affected from 

the view of the router is shown in the images of Figures 4(b), 5(b), and 6(b). Severity images 

from Figures 4(b) and 5(b) show that NZ and WIDE routers can detect that a large number of 

nodes are affected. However, Figure 6(b) shows that only a small number of nodes are affected 

as the visibility level of the affected nodes is insufficient in comparison to NZ and WIDE. This 

helps to reinforce that multiple core routers should be used to detect anomalies within the 

Internet. 

5.3.2 Degree Centrality 

Figures 7(a) and 8(a) show an increase in the anomaly score before the expected time breach. 

Like CC for SOXRS, a detection later than the expected time breach is observed in Figure 9(a) 

as it is further away from the source of the incident. However, unlike the severity images as 

shown in Figures 7(b), 8(b), and 9(b), only the NZ core router shows that a large number of 

ASes are affected in Figure 8(b). Figures 7(b) and 9(b) do not indicate that a significant number 

of ASes are affected. This is due to the nature of DC which can only reflect anomalies for the 

immediate neighbours of a node. Both WIDE and SOXRS are not directly involved in the 

incident, hence the visibility of the number of ASes affected is not significant for both routers. 

Although this may suggest that DC should not be used to detect anomalies as it can yield false 

negatives, DC will unlikely yield false positives, as a significant change in immediate 

neighbours of a node can indicate instability in a network. Furthermore, for applications where 

there are constraints on computing power, an inexpensive computation will be ideal when 

using DC, as it has a complexity of O(n), where n represents the number of nodes in the graph 

in comparison to the complexity of CC, O(ne), where e represents the number of edges in the 

graph.  
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 5.4. Individual Network Anomaly Detection  

If the entire network is deemed anomalous using Autoencoders, specific ASes should be 

investigated to determine whether they are affected or is the source of the BGP incident. 

Individual anomaly scores for each AS are determined through DC and CC using UG. The 

gathered anomalous ASes can be used to update the routing table of ISPs such that traffic is 

not routed to/through them, thus minimising the chance of disruption for Internet users.  

5.4.1 AS38022 
Figures 11, 12, and 13 show a 

rise in the anomaly score 

before the expected time 

breach as the network was 

unstable. A later time breach is 

predicted for NZ as shown in 

Figure 10 as the anomaly event 

did not stem from AS38022. 

The distance from AS38022 to 

its reachable neighbours did 

not change until the error 

from the source of the 

anomaly, AS3561, propagated 

through the Internet. As 

AS3561 is a trusted network 

peer of AS38022, the error that 

is propagated by AS3561 is 

deemed normal when transferred to AS38022. However, an earlier time breach is predicted 

from WIDE as it can view the anomalous activity between AS38022 and AS3561 from an 

outsider’s point of view. 

 An earlier detection for DC as shown in Figure 11 is due to the number of immediate 

neighbours of AS38022 changing significantly during the anomaly event as shown in 

Appendix B. This is because a significant change in the immediate neighbours of a node can 

instantly be reflected in a single BGP update. A significant change in the distance to all the 

reachable neighbours of a node can change in multiple BGP updates as such updates are 

propagated router to router. This suggests that DC can detect anomalies faster than CC. 

However, computation of CC is recommended as it can indicate whether all the reachable 

neighbours of a node are affected by the anomaly event. This is useful for network 

administrators to determine the severity of the anomaly incident and thus, allocate the 

appropriate amount of resources to remediate the incident. 

No anomaly score is generated from SOXRS for AS38022 as it does not have AS38022 

within its routing table during the detection period. This is because SOXRS is geographically 

further away from AS38022 and did not have any traffic that travelled to AS38022 within the 

detection period. This suggests that multiple core routers should be used for detection to allow 

anomalies to be discovered throughout the Internet.   

 

Figure 10 NZ AS38022 CC Figure 11 NZ 38022 DC 

Figure 13 WIDE 38022 DC Figure 12 WIDE 38022 CC 
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5.4.1 AS3561 

The anomaly source can be determined using the time at which the anomaly threshold is 

breached. For example, NZ detected abnormal behaviour at least 1 hour before the anomaly 

event as shown in Figures 14 and 17.  This is because AS3561 is an immediate neighbour of 

NZ, hence it can detect abnormal behaviour before WIDE and SOXRS. In the experimental 

results, AS3561 is the earliest breached AS in the BGP CenturyLink outage which suggests that 

it is the source of the incident. This suspection is correct as the BGP CenturyLink outage 

stemmed from its own AS, which is AS3561. 

Depending on the source of the anomaly, different core routers will detect anomalies at 

different times. This is because BGP works by transferring update messages router to router. 

Hence, routers that are further away from the announcing router will hear the BGP updates at 

later stages. For example, as SOXRS is geographically further away from AS3561, the detection 

of the anomalous activity is 2 hours after the anomaly event as shown in Figures 16 and 19. 

WIDE is closer to AS3561 than SOXRS, hence an earlier detection is observed as shown in 

Figures 15 and 18. However, a later detection is observed for the CC from WIDE as shown in 

Figure 15. This is because the distance to the reachable neighbours of AS3561 changed after 

the error had propagated within the network. This suggests that CC can also be used to detect 

whether the error has been propagated to the reachable neighbours of a node. As major ISPs 

of the Internet are interconnected, the reachable neighbours of a core router will consist of the 

Tier 1 ISPs, producing a generalised anomaly indication for the Internet. 

 5.5. Discussion 

5.5.1 Evaluation Results 

The anomaly detection for the entire network uses Autoencoders which shows to be successful 

in Section 5.3. In particular, Autoencoders can detect abnormal behaviour for routers that are 

located further away from the anomaly source. As shown in Figure 20, Autoencoders can 

Figure 14 NZ AS3561 CC 

Figure 17 NZ AS3561 DC 

Figure 15 WIDE 3561 CC 

Figure 18 WIDE 3561 DC 

Figure 16 SOXRS AS3561 CC 

Figure 19 SOXRS AS3561 DC 
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detect that there is an increase in the 

anomaly score from the point of view of 

SOXRS using DC during the anomaly 

incident. SOXRS can only detect that a 

small number of ASes are affected as it 

is located further away from the source 

of the anomaly. Detection is capable 

using Autoencoders as it can detect 

anomalies despite having a small 

number of nodes affected due to the 

usage of one distribution for all ASes.  

A full joint UG can also be used 

to detect anomalies in the entire 

network. For example, as shown in 

Appendix E, UG shows similar results 

in the prediction of the anomaly breach 

like Autoencoders, where the predicted 

time breach is before the expected time 

breach from the NZ and WIDE routers, 

and after the expected time breach from 

the SOXRS router. Similar results are 

shown as the covariance matrix resolves 

the limitation of UG, where it is unable 

to find correlations between features 

like Autoencoders as they are passed in 

separately. For example, UG does not 

show an expected increase in the 

anomaly score without computing the 

covariance matrix as shown in Figure 20. This is because Autoencoders considers all features 

as a singular distribution as shown in Figure F.1, whereas UG considers each feature as a 

singular Gaussian distribution as shown in Figure F.2.  

When there are resource constraints, UG would be preferred over Autoencoders as it 

is computationally faster. This is because features only need to be looked at once to train the 

model as opposed to multiple times when using Autoencoders. Additionally, UG would be 

more suitable to adapt for different ISPs as it does not require re-selection of multiple training 

parameters. Only the number of components in the dataset is required to be re-selected. 

Investigation of the number of components in the centralities also facilitates data analysis 

where the number of network structures present in the dataset can be predicted. This enables 

ISPs to investigate changes made to a specific network structure to determine anomalies and 

the reliability of the network.  

Autoencoders, on the other hand, requires a re-selection process as it is a black box 

method. However, UG is not a stable model that optimizes the anomaly detection function. 

Figure 20 SOXRS DC using Autoencoders 

and UG 

Figure 21 SOXRS CC using Autoencoders and 

UG 
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For example, when comparing Autoencoders and UG’s results of DC from SOXRS in Figure 

9(a) and E.4 respectively, there is an instability of the anomaly score when using UG. This is 

because a Gaussian model captures (pair-wise) covariances, that is, second-order structure in 

the density function over features. In principle, Autoencoders embodies a richer 

representation of density, about to model higher-order structure rather than being limited to 

covariances. The correlations within DC are low in comparison to CC. For example, when 

using UG as an independent Gaussian per feature as shown in Figures 20 and 21, an expected 

rise is only observed for CC as correlations are initially present in the features before being 

passed to the machine learning model. Low correlations are observed for DC because only the 

immediate neighbours are used in computation as opposed to all reachable neighbours, as 

applied by CC. Furthermore, when insufficient visibility is encountered such as in the case of 

SOXRS, the covariances amongst features will be harder to find as there are fewer features to 

compute the covariances. Hence, this suggests that UG should be used for routers that are 

positioned geographically closer to other routers such as London and Singapore. In contrast, 

Autoencoders should be used for routers that are placed geographically further away from 

other routers, such as SOXRS, to enable anomaly detection.  

Anomaly detection for the entire network shows the advantages and disadvantages of 

using DC and CC. Both DC and CC show similar results, with a similar time of anomaly 

detection. However, DC is cheaper to compute than CC as it requires the calculation of nodes’ 

immediate neighbours instead of reachable neighbours. This suggests that DC should be used 

to alert anomalies in the entire network. CC, however, performs better than DC in determining 

the severity of the incident, as shown in Section 5.3.1. A large number of ASes were indicated 

as anomalous which supports the high number of affected ASes shown in the BGP 

CenturyLink outage in Appendix B. This is because CC takes into account the reachable 

neighbours of each node. This means that an outage of a major ISP will be reflected in more 

ASes when using CC in comparison to DC which only considers the immediate neighbours of 

nodes.  

Another disadvantage of DC is that it can have a longer training period than CC. As 

shown in the entire and individual network monitoring of DC, the anomaly score is unstable 

in comparison to CC, where rapid peaks and dips can be seen. This is because DC can have a 

much more significant change in immediate neighbours in comparison to the reachable 

neighbours of a node used in CC. The result of rapid changes means that the machine learning 

model must train for a longer time to optimise the weights used in the computation. This also 

suggests that DC is more likely to encounter false positives than CC as it can experience rapid 

changes in the network. 

To detect anomalies in real-time, such a capability from the proposed system is possible 

for NZ, WIDE and SOXRS. It takes on average 5 minutes and 26 seconds to generate features 

for one 15-minute period 40KB BGP update and one hourly 10MB bview. This means that the 

proposed system can compute the anomaly score for the defined entire network within 15 

minutes when a BGP update arrives, thus the real-time detection capability of the system is 

possible.  
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CC and DC reflect capabilities in the entire network and individual network anomaly 

detection, but further enhancements to allow a faster and more confident anomaly detection 

method could be achieved using traffic link analysis. The amount of traffic generated in DoS 

attacks such as Slammer Worm and WannaCry can generate a copious amount of traffic. By 

analysing the traffic alongside the generated network topology from BGP updates, the level of 

service disruption can be determined. As a result, ISPs can quickly identify current or potential 

bottlenecks and determine whether additional resources must be leveraged to combat the 

surge of Internet traffic. 

During the evaluation, the selection of training datasets was important to determine 

the correctness of the model. For example, the network graph at certain periods, with a 

difference of years or months could be significantly different. This is because the network can 

change significantly within monthly periods due to the new establishment of peers between 

ISPs. However, the network does not change rapidly within weeks as BGP peers require 

contract agreements to be formally established. Hence, it is recommended that the model in 

practice should be trained using data at least two weeks from the current date. Using less than 

two weeks of data is inadequate as there are insufficient training data provided for the 

machine learning models to find correlations or define a correct distribution for detecting 

anomalies. If an anomaly incident occurs, the model must be retrained or should ignore the 

anomaly data. This suggests that further research on implementing online learning should be 

conducted to enhance the detection accuracy of the model. 

5.5.2 Limitations 

There are limitations presented in the evaluation method. Due to the time and processing 

power constraint, further evaluation on major core routers such as London and Singapore are 

unable to be conducted. Such routers contain gigabytes of data for each 15-minute BGP update 

in comparison to kilo or megabytes of data in SOXRS, NZ and WIDE. This is because routers 

such as London and Singapore are the heart of BGP exchanges of Europe and Asia 

respectively. This suggests that further improvements to increase the computation speed of 

the proposed detection method can be achieved using distributed processing where BGP 

updates are processed in multiple workloads.  

Another limitation of the evaluation method is that the evaluation was limited to the 

NZ core router and its neighbours (up to 2 hops away). This means that anomalies in other 

parts of the Internet are not evaluated. A limit on the size definition of the entire network is 

required as the memory and computation requirements are infeasible when considering more 

hops. Hence, further investigation on using neighbourhood aggregation to detect anomalies 

on the Internet can be conducted to detect Internet-wide anomalies. Other anomaly incidents, 

such as Slammer worm, should also be evaluated to further determine the correctness of the 

proposed method. 

The entire network and individual network capabilities reflected in this chapter 

present the detection capability for BGP anomaly events. Further improvements to the 

evaluation method using traffic link analysis, network aggregation, and BGP updates from 

major core routers should be investigated to determine potential enhancements to the system. 

Future work recognised for the system will be discussed in the following chapter. 
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Chapter 6 

Conclusions and Future Work 

This chapter concludes and states the overall outcomes of the design, implementation and 

evaluation chapters presented above. Future work recommended to be examined will be 

discussed to enhance the proposed system of network anomaly detection. 

 6.1. Conclusions 

In this project, a network anomaly detection method using graph-like features is proposed.  

The detection method can help detect BGP anomaly incidents such as misconfiguration events.  

The first goal of the project where BGP updates are mapped into a network graph is 

achieved. BGP update attributes such as source, destination, withdrawals, announcements 

and AS path are used to construct the nodes and links of the network graph. Construction of 

the network graph enables graph-like features to be extracted and analysed for anomalies. The 

use of a trie data structure to store the IP address to node mapping is added to enhance the 

efficiency of the address search. 

The project’s second goal where graph-like features are extracted from the constructed 

network graph is achieved. Extracted features include DC and CC which reflect the 

connectivity of nodes that change significantly during a BGP incident. Such features are also 

feasible in time and complexity to allow practical uses for ISPs. The extracted features prove 

to be successful in detecting anomalies for the entire network and individual networks during 

a BGP incident as shown in Chapter 5. A further severity image showing the number of 

affected ASes is also produced to allow the determination of the incident severity. Three core 

routers (NZ, WIDE and SOXRS) are also used to evaluate the proposed detection method to 

determine a network-wide anomaly detection capability.  

The third goal of the project where the determination of the anomaly source is achieved 

through the predicted time breach of the anomaly threshold. As shown in Chapter 5, breaches 

of the anomaly threshold can be at various times. Therefore, the earliest time breach for a 

specific network can indicate that the anomaly incident stemmed from such a network. By 

determining the source of the anomaly, prevention strategies such as re-routing traffic to avoid 

passing through the anomalous ASes can be conducted, thus, decreasing the chance of DoS 

caused for Internet users. 

 6.2. Future Work 

In addition to the completion of the project goals listed above, future work recommended to 

be examined to improve the proposed system is listed below: 
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1. Distributed Processing – Distributed processing is where computational workloads are 

balanced amongst multiple processors. To enhance the computational speed of 

extracting graphical features from BGP updates, distributed processing with classical 

multilateration of BGP bview and update sets can be used to process data-intensive 

routers such as London and Singapore [24]. 

2. Network Neighbourhood Aggregation - To scale the entire network to the Internet, 

networks can be aggregated into neighbourhoods to reflect a more condensed network. 

This enables earlier anomaly detection within the Internet. Further investigation in 

using existing datasets to train a machine learning model to automatically aggregate 

networks within the Internet is recommended to be examined. 

3. Traffic Link Analysis – Alongside BGP updates, additional data such as the amount of 

traffic that is travelling in the network links can be used to determine anomalies. This 

helps to better detect Distributed DoS (DDoS) attacks which are commonly seen in [25] 

as the centrality of nodes cannot reflect the amount of traffic that is travelling between 

ASes. 

4. Variational Autoencoders – The proposed method for detecting anomalies in the entire 

network uses Autoencoders which can fail to represent data in latent space that is not 

within the observed data [26]. This is because there is no learning of the latent state or 

probability distributions of inputs. Although methods such as UG can represent inputs 

in probability distributions, it may describe all inputs to have similar characteristics as 

every observation is described in the Gaussian distribution. Instead, a method such as 

variational autoencoders should be used which can simultaneously describe data in 

latent space in a probabilistic manner [27]. This can help to better detect anomalies by 

enhancing the classification of data. 

5. Selection of Core Routers – The selection of core routers to monitor Internet-wide 

anomalies should be investigated. The selection method can investigate on generating 

a trustworthiness scheme for each BGP router. Such a scheme can comprise the 

number of valid routes that a router has advertised and whether the router is 

positioned at a place that can cover a part of the Internet that other routers cannot 

observe. This helps to ensure that Internet-wide anomalies can be detected using 

trusted core routers. 

6. Online or Batch Learning – A scheme to select the an appropriate amount of data to 

continuously train the proposed machine learning models is recommended to be 

conducted. Such schemes should investigate on using methods such as stochastic 

gradient descent to improve the proposed loss function.  

7. Other Application Areas - In other application areas which can be represented in a 

graph, detection of anomalies using centrality information can also be possible. For 

example, anomalies present in power grids and transport traffic can be detected using 

centralities where a change in the topology can indicate a power outage or a traffic 

accident respectively in both cases. Thus, modifying the proposed system to extract 

centrality information to detect anomalies for a certain application area can be 

investigated to detect anomalies. 
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