
Public Suffix List DNS Query Service
RIPE 83

November 25, 2021

https://publicsuffix.zone/
Dr. Peter Thomassen

https://publicsuffix.zone/

The Public Suffix List (PSL)

A "public suffix" is one under which Internet users can (or historically could) directly
register names. Some examples of public suffixes are .com, .co.uk and
pvt.k12.ma.us. The Public Suffix List is a list of all known public suffixes.
— https://publicsuffix.org/

What does that mean?

● Informs about organization and policy boundaries in the domain space

● Supports wildcards, and exceptions from wildcards

● Maintained by the community (on GitHub) and provided as a text file

2

https://publicsuffix.org/

PSL Use Cases

● Browsers
○ cookie/script scoping, domain highlighting / phishing prevention, …

● Certificate issuance
○ think of *.co.uk

● Multi-tenant DNS operation ← our motivation (DNS platform desec.io)
○ think of a customer creating co.uk, blocking others from creating example.co.uk

● DMARC
○ identify the “organization domain” (= public suffix plus previous label, e.g. example.co.uk)

3

https://desec.io/

Why a PSL Query Service?

Situation without Query Service:

● Applications have to bring a copy of the list, and need to keep it up to date

● Applications have to parse the list

● Extracting information from the PSL requires a multi-staged algorithm

With a DNS-based Query Service:

● No need for applications to parse or refresh the PSL altogether

● Public suffix can be retrieved ad-hoc with a simple lookup, cacheable

● No need for specialized tooling

4

● In a special zone, public suffixes are stored as PTR owner names and values
○ co.uk PTR co.uk.

● All other names have a CNAME record (or are covered by a CNAME wildcard)

● A domain’s public suffix is retrieved as the PTR record at the domain’s name
○ CNAMEs take care of “routing”

● Auxiliary rules that influenced the PTR outcome are given as a TXT record
○ e.g. in case of wildcard exceptions: parent rule is given in PTR, wildcard + exception in TXT

● We implemented this under query.publicsuffix.zone
○ Authenticity is provided by DNSSEC

How it works

5

Examples
Standard cases:

$ dig +noall +answer PTR indico.dns-oarc.net.query.publicsuffix.zone
indico.dns-oarc.net.query.publicsuffix.zone. 21530 IN CNAME net.query.publicsuffix.zone.
 net.query.publicsuffix.zone. 7199 IN PTR net.

$ dig +noall +answer PTR s3.dualstack.eu-west-1.amazonaws.com.query.publicsuffix.zone
s3.dualstack.eu-west-1.amazonaws.com.query.pu… 21600 IN PTR s3.dualstack.eu-west-1.amazonaws.com.

$ dig +noall +answer PTR s4.dualstack.eu-west-1.amazonaws.com.query.publicsuffix.zone
s4.dualstack.eu-west-1.amazonaws.com.query.pu… 7198 IN CNAME dualstack.eu-west-1.amazonaws.com.query.pu…
 dualstack.eu-west-1.amazonaws.com.query.pu… 7198 IN CNAME eu-west-1.amazonaws.com.query.pu…
 eu-west-1.amazonaws.com.query.pu… 7198 IN CNAME amazonaws.com.query.pu…
 amazonaws.com.query.pu… 7198 IN CNAME com.query.pu…
 com.query.pu… 7198 IN PTR com.

Wildcard with exception:

$ dig +noall +answer ANY www.ck.query.publicsuffix.zone | grep -v RRSIG
www.ck.query.publicsuffix.zone. 21600 IN PTR *.
www.ck.query.publicsuffix.zone. 21600 IN TXT "!www.ck"
www.ck.query.publicsuffix.zone. 21600 IN TXT "*.ck" 6

Implementations / Demo

● Lookup zone implemented under query.publicsuffix.zone
○ hosted by deSEC Managed DNS

● https://publicsuffix.zone/ has a live demo
○ uses JavaScript requests to Google’s DoH resolver

● Python implementation: https://pypi.org/project/psl-dns/
○ library + CLI

○ implements both querying and parsing (for preparing zone updates)

○ currently supports deSEC implementation, but interface is provider-agnostic

7

https://publicsuffix.zone/
https://pypi.org/project/psl-dns/

Outlook

● The PSL Query Service works perfectly well for internal use case at deSEC

● Are there any use cases beyond that?
○ Do they need extra features? (e.g. distinguish between ICANN and PRIVATE section)

● It has been suggested to make this a “permanent service” embedded in the

community
○ Does that make sense?

○ If yes, what kind of oversight is needed / who does that?

● …

8

Thank you! Questions?

9

Backup

10

● The PSL parsing algorithm is not trivial
○ for example, it’s important to get rule precedence right

● PSL rules almost match DNS data structures, but not quite (see limitations)

● PSL rules on a deeper level cause empty non-terminals
○ intermediate levels need CNAME but can’t be covered with a DNS wildcard

→ Things need to be glued together with a CNAME chain

● ~75k records total (~20k for PSL mapping, ~55k for DNSSEC)
○ incremental updates require calculating large diff

Implementation Challenges

11

Limitations

Inline wildcards (foo.*.example.com)

● not possible in DNS, but the PSL supports them
● no such entries at the moment

○ support may be dropped soon: https://github.com/publicsuffix/list/issues/145

→ DNS implementation provides full coverage in practice

Updates

● currently every few weeks (not automated)
● could be automated easily based on GitHub action or atom feed

12

https://github.com/publicsuffix/list/issues/145

Addressing Privacy Concerns

● DNS resolvers learn about domains that get queried
● Depending on the use case, this may not be up to required privacy standards

Solution ideas

● Resolver-local copy (e.g. via AXFR)
○ deSEC use case: we resolve directly against our own auth → no leakage

● k-anonymity: replace all labels by truncated hashes → collisions intended
○ queries are fuzzy
○ returns list of hashes that matched the truncated query (client infers the answer from the list)
○ inference from hierarchy patterns still possible
○ required API changes not very DNS-like → perhaps not the best idea

13

https://en.wikipedia.org/wiki/K-anonymity

